В математике вы, возможно, встречались с терминами выражение и уравнение очень часто. Поскольку оба объединяют число и / или переменные, люди часто неправильно понимают выражение для уравнения. Однако эти два математических термина не одинаковы, и большая разница заключается в их расположении, которое объясняет, что они представляют. Лучший способ определить, является ли данная проблема выражением или уравнением, состоит в том, что если она содержит знак равенства (=), это уравнение.
Однако, если он не содержит знак равенства (=), то это просто выражение. Он несет числа, переменные и операторы, которые используются, чтобы показать ценность чего-либо. Прочитайте эту статью, чтобы понять основные различия между выражением и уравнением.
Основа для сравнения | выражение | Уравнение |
---|---|---|
Смысл | Выражение - это математическая фраза, которая объединяет числа, переменные и операторы, чтобы показать значение чего-либо. | Уравнение - это математическое утверждение, в котором два выражения заданы равными друг другу. |
Что это? | Фрагмент предложения, обозначающий одно числовое значение. | Предложение, которое показывает равенство между двумя выражениями. |
Результат | упрощение | Решение |
Символ отношения | нет | Да, знак равенства (=) |
Стороны | Односторонний | Двусторонняя, левая и правая |
Ответ | Численная величина | Утверждение, то есть истинное или ложное. |
пример | 7x - 2 (3x + 14) | 7x - 5 = 19 |
В математике выражение определяется как фраза, которая группирует числа (константы), буквы (переменные) или их комбинации, объединенные операторами (+, -, *, /), для представления значения чего-либо. Выражение может быть арифметическим, алгебраическим, полиномиальным и аналитическим.
Поскольку он не содержит знака равенства (=), он не показывает никаких отношений. Следовательно, он не имеет ничего общего с левой или правой стороной. Выражение можно упростить, комбинируя подобные термины, или его можно оценить, вставив значения вместо переменных, чтобы получить числовое значение. Примеры: 9x + 2, x - 9, 3p + 5, 4m + 10
В математике термин уравнение означает утверждение равенства. Это предложение, в котором два выражения помещены равными друг другу. Чтобы удовлетворить уравнению, важно определить значение соответствующей переменной; это известно как решение или корень уравнения.
Уравнение может быть условным или тождественным. Если уравнение условный, тогда равенство двух выражений истинно для определенного значения задействованной переменной. Однако, если уравнение идентичность, тогда равенство истинно для всех значений, содержащихся в переменной. Существует четыре типа уравнений, которые обсуждаются ниже:
Приведенные ниже пункты суммируют важные различия между выражением и уравнением:
Следовательно, из приведенного выше объяснения ясно, что между этими двумя математическими понятиями существует большая разница. Выражение не раскрывает никаких отношений, в то время как уравнение делает. Уравнение содержит знак равенства, поэтому оно показывает решение или в конечном итоге представляет значение переменной. Однако в случае выражения знак равенства отсутствует, поэтому нет определенного решения и в конечном итоге не может отображаться значение соответствующей переменной..